Nanocomposite Materials Offer Battery Boost

Nanocomposite Materials Offer Battery Boost

New research from the Georgia Institute of Technology suggests material could vastly improve performance of lithium-ion batteries for cars and electronics.

A new high-performance anode structure based on silicon-carbon nanocomposite materials could significantly improve the performance of lithium-ion batteries used in a wide range of applications from hybrid vehicles to portable electronics.

Produced with a "bottom-up" self-assembly technique, the new structure takes advantage of nanotechnology to fine-tune its materials' properties, addressing the shortcomings of earlier silicon-based battery anodes. The simple, low-cost fabrication technique was designed to be easily scaled up and compatible with existing battery manufacturing.

Details of the new self-assembly approach were published online in the journal Nature Materials in March.

"Development of a novel approach to producing hierarchical anode or cathode particles with controlled properties opens the door to many new directions for lithium-ion battery technology," says Gleb Yushin, an assistant professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. "This is a significant step toward commercial production of silicon-based anode materials for lithium-ion batteries."

A new high-performance anode structure offers as much as a tenfold capacity improvement over traditional lithium-ion batteries.

The popular and lightweight batteries work by transferring lithium ions between two electrodes -- a cathode and an anode -- through a liquid electrolyte. The more efficiently the lithium ions can enter the two electrodes during charge and discharge cycles, the larger the battery's capacity will be.

Existing lithium-ion batteries rely on anodes made from graphite, a form of carbon. Silicon-based anodes theoretically offer as much as a tenfold capacity improvement over graphite, but silicon-based anodes have so far not been stable enough for practical use.

Graphite anodes use particles ranging in size from 15 to 20 microns. If silicon particles of that size are simply substituted for the graphite, expansion and contraction as the lithium ions enter and leave the silicon creates cracks that quickly cause the anode to fail.

The new nanocomposite material solves that degradation problem, potentially allowing battery designers to tap the capacity advantages of silicon. That could facilitate higher power output from a given battery size -- or allow a smaller battery to produce a required amount of power.

"At the nanoscale, we can tune materials' properties with much better precision than we can at traditional size scales," says Yushin. "This is an example of where having nanoscale fabrication techniques leads to better materials."

Electrical measurements of the new composite anodes in small coin cells showed they had a capacity more than five times greater than the theoretical capacity of graphite.

So far, the researchers have tested the new anode through more than 100 charge-discharge cycles. Yushin believes the material would remain stable for thousands of cycles because no degradation mechanisms have become apparent.

"If this technology can offer a lower cost on a capacity basis, or lighter weight compared to current techniques, this will help advance the market for lithium batteries," he says. "If we are able to produce less expensive batteries that last for a long time, this could also facilitate the adoption of many 'green' technologies, such as electric vehicles or solar cells."

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish