Alcoa Scores Airbus Supply Deal on Strength of 3DP

April 7, 2016
Alcoa emphasized that its portfolio of materials design, various production capabilities, and aerospace product experience, all were decisive factors for Airbus in its contract placement.
The $22-million hot-isostatic press installation completed last year at Alcoa’s Whitehall, MI, complex is able to process the company’s largest aerospace engine structural parts.

Alcoa reported some new details of its supply agreement with Airbus, following a $1-billion deal announce last fall, involving 3D-printed titanium fuselage and engine pylon parts. Without offering a value for the new contract, nor the particular Airbus jet series involved in the supply, Alcoa said the deliveries would begin mid-year.

The supplier emphasized that its portfolio of materials design, various production capabilities, and aerospace product experience, all were decisive factors for Airbus in its contract placement.

According Alcoa chairman and CEO Klaus Kleinfeld. “The unique combination of our multi-material alloy development expertise, powder production capabilities, aerospace manufacturing strength and product qualification know-how position us to lead in this exciting, emerging space.”

>Many of the parts will be sourced from Alcoa Titanium & Engineered Products (ATEP), the business unit that consists largely of the RTI International Metals organization that Alcoa purchased last year for $1.5 billion. Those operations include titanium refining, casting, forming, and 3D-printing capabilities.

For the Airbus program, the ATEP 3DP operation at Austin, TX, will be a important supplier, as will other titanium ingot melting and billet casting, machining, finishing, and inspection capabilities.

The Airbus project also will draw on Alcoa’s CT scanning and hot isostatic pressing (HIP) capabilities at Whitehall, MI. HIP is a thermal forming process in which heat and pressure are applied to cast products (e.g., turbine blades, engine structures) simultaneously under a pressurized atmosphere, in a controlled sequence that aims to improve the mechanical and structural properties of the component. 

Last year Alcoa invested $22 million to install a new HIP system at Whitehall, capable of processing the largest jet-engine parts in its portfolio. It calls the Michigan operation one the world’s largest “aerospace HIP technology” complexes.

3DP capabilities are being expanded as well at the Alcoa Technical Center in Pittsburgh, where a $60-million project is in progress. Among the details of that project is a pilot-scale development of Alcoa’s Ampliforge process, in which a part designed and produced using 3D printing is completed using a more standard process, i.e., forging. According to Alcoa, it has demonstrated that the Ampliforge process enhances the properties of 3D-printed parts, e.g., hardness and strength, compared to additive manufactured parts without further treatment.

It’s notable that several of the operations involved in the Airbus supply program are due to be spun-off b Alcoa to a new “downstream company”, called Arconic, later this year.

About the Author

Robert Brooks | Content Director

Robert Brooks has been a business-to-business reporter, writer, editor, and columnist for more than 20 years, specializing in the primary metal and basic manufacturing industries. His work has covered a wide range of topics, including process technology, resource development, material selection, product design, workforce development, and industrial market strategies, among others. Currently, he specializes in subjects related to metal component and product design, development, and manufacturing — including castings, forgings, machined parts, and fabrications.

Brooks is a graduate of Kenyon College (B.A. English, Political Science) and Emory University (M.A. English.)

Sponsored Recommendations

Voice your opinion!

To join the conversation, and become an exclusive member of IndustryWeek, create an account today!