Novoheart
Industryweek 36632 Novoheart 1

AstraZeneca Joins Novoheart to Develop Heart-in-a-Jar Model of Heart Failure

Dec. 3, 2019
The companies will develop the world’s first human-specific in vitro, functional model of heart failure as a means to accelerate drug discovery.

Heart failure is a global pandemic with an estimated 64.3 million cases worldwide in 2017.

In half of these cases, preserved ejection fraction (HFpEF) is the reason for the failure. This a common condition among the elderly and especially in women, with the reported prevalence approaching 10% in women over the age of 80 years.

Its pathological mechanisms and diverse etiology are poorly understood. Due to these complexities, models of the disease available to date, including various animal models, have limited ability to mimic the clinical presentation of HFpEF.

The result is that drug developers lack an effective tool for preclinical testing of drug candidates for efficacy, and clinical outcomes for HFpEF have not improved over the last decades, with no effective therapies available.

To help change all of that Novoheart, a  stem cell biotechnology company, joined with AstraZeneca and on Nov. 26 announced a joint effort to develop the world’s first human-specific in vitro, functional model of heart failure with preserved ejection fraction (HFpEF).

In collaboration with the Cardiovascular, Renal and Metabolism therapy area of AstraZeneca, the initial phase of the project aims to establish a new in vitro model, leveraging Novoheart’s  3-D human ventricular cardiac organoid chamber (hvCOC) technology, that reproduces key phenotypic characteristics of HFpEF.

Also known as “human heart-in-a-jar”, the hvCOC contains human-engineered heart tissue that enables clinically informative assessment of human cardiac pump performance including ejection fraction and developed pressure.

Unlike animal models, engineered hvCOCs can be fabricated with specific cellular and matrix compositions, and patient-specific human induced pluripotent stem cells (iPSCs), that allow control over their physical and mechanical properties to mimic those observed in HFpEF patient hearts.

“This could bridge the gap between in vivo animal models and clinical trials to help accelerate the drug discovery process by providing human-specific preclinical data,” said Regina Fritsche Danielson, senior vice president, Head of Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca.

Popular Sponsored Recommendations

3 Best Practices to Create a Product-Centric Competitive Advantage with PRO.FILE PLM

Jan. 25, 2024
Gain insight on best practices and strategies you need to accelerate engineering change management and reduce time to market. Register now for your opportunity to accelerate your...

Capitalize on Energy Flexibility with These Four Strategies

Feb. 4, 2024
Energy flexibility – the ability to temporarily reduce or shift energy use – can unlock revenue, lower energy costs, and more. Learn how to capitalize on energy flexibility with...

3D Printing a More Efficient Factory Floor

Nov. 16, 2023
Today’s additive manufacturing platforms make it simple to print a wide range of high-performing industrial parts as soon as possible and right where you need them — unlocking...

Smart Factory Impact on Manufacturing KPIs

Feb. 1, 2024
Explore the transformative power of Smart Factory solutions beyond OEE metrics. This whitepaper outlines the untapped potential, revealing how a holistic approach can elevate ...

Voice your opinion!

To join the conversation, and become an exclusive member of IndustryWeek, create an account today!