Using CMCs in the hot section of the LEAP and other jet engines is described by GE Aviation as a breakthrough for the jet propulsion industry Onethird as dense as metal alloys they help to reduce the overall engine weight and the hightemperature properties enhance engine performance durability and fuel economy

GE Aviation Building Advanced Ceramic Materials Plants

June 17, 2016
GE Aviation broke ground in Huntsville, Ala., on two adjacent factories to mass-produce silicon carbide (SiC) materials, to be used to manufacture ceramic matrix composite components (CMCs) for jet engines and land-based gas turbines for electric power.

GE Aviation, a subsidiary of General Electric Corp. (IW500/6), broke ground in Huntsville, Ala., on two adjacent factories to mass-produce silicon carbide (SiC) materials, to be used to manufacture ceramic matrix composite components (CMCs) for jet engines and land-based gas turbines for electric power. The plants, announced last fall, represent an investment of more than $200 million by the jet-engine manufacturer, which noted they will employ up to 300 people and are expected to be complete in the first half of 2018.

GE Building Two Plants to Produce Ceramic-Matrix Materials

GE Claims Success with CMC for Engine Rotating Parts

One plant will produce SiC ceramic fiber, the first operation to do this in the U.S. The second will use these SiC ceramic fibers to produce unidirectional CMC tape required to fabricate CMC components.

"GE Aviation is creating a fully integrated supply chain for producing CMC components in large volume, which is unique to the United States," stated vice president Sanjay Correa. Correa called the two plants “vital to that effort.

Read More


American Machinist is an IndustryWeek companion site within Penton's Manufacturing & Supply Chain Group.


About the Author

Robert Brooks | Content Director

Robert Brooks has been a business-to-business reporter, writer, editor, and columnist for more than 20 years, specializing in the primary metal and basic manufacturing industries. His work has covered a wide range of topics, including process technology, resource development, material selection, product design, workforce development, and industrial market strategies, among others. Currently, he specializes in subjects related to metal component and product design, development, and manufacturing — including castings, forgings, machined parts, and fabrications.

Brooks is a graduate of Kenyon College (B.A. English, Political Science) and Emory University (M.A. English.)

Sponsored Recommendations

Voice your opinion!

To join the conversation, and become an exclusive member of IndustryWeek, create an account today!